

Welcome to our guides page!

Introduction

This is Employee Handbook for our current and future developers.

Status

This is a work in progress. Actually, what you are reading now is a very early draft.

About RST Software House

We are software house from Wroclaw we build online systems & we love to help startups. We create user-friendly web & mobile applications using best programming practices.

tldr

	Be Agile.

All good practices come from Agile manifesto. be familiar with this. Read more in Agile chapter.

	Write code for others (including “future you”). Check Code Style chapter.

	Practice Test-Driven Development (TDD).

	TDD (practiced correctly) helps come with better software design.

	It give us confidence that our product work properly, and that we can refactor them without fear of breaking things beyond repair.

Read more in testing chapter.

	Create Ubiquitous Language for project.

All project members should be familiar with business logic nomenclature.

	Practice “Documentation Driven Development”.
See documentation chapter in this document.

Write documentation alongside the code. The simple act of trying to explain to others what we are trying to achieve with our software, and how, helps us clarify our thinking. If it’s too hard to explain, then it’s probably badly architected, designed or implemented.

	Practice Domain Driven Design (DDD).

See the Architecture chapter in this document.

	Use on click test and deploy.

We use docker for CI and deployment configuration. Read DevOps chapter for more information

Table of Content

	Introduction
	Zen of Python

	Principles
	Single Responsibility Principle

	Open-Closed Principle

	Liskov Substitution Principle

	Interface Segregation Principle

	Dependency Inversion Principle

	Style
	Little Zen for Code Style

	Strict Rules

	Usefull tools

	Code Review
	Before you create PR

	Basics

	When your code is reviewed:

	When you review someone’s code

	Design Architecture
	DDD Introduction

	DDD Recipes

	Open Source
	Our open source projects

	Guides

	Process [WIP]
	Idea

	Prioritizing and scheduling tasks

	Versionning and releasing

	Python Libraries

	Resources
	Books

	Blogs

	stackoverflow questions

	YouTube Videos

	YouTube Channels

	Podcasts

	Sample Projects

	Documentation
	Glossary

	Readme

	API specification

	Docstring

	Type Hint

	Refactoring [WIP]
	The Boy Scout Rule

	Refactoring Patterns

	PyCharm tips and tricks

	Modeling [WIP]

	Testing [WIP]
	Unit tests

	Integration tests

	Mocking

	Patching

	TDD

	pytest

	utils

	DevOps
	Continous Integration

	Infrastructure

	Tools

	Scaling

Introduction

One of the most important principle that should be understood and applied in our projects is Zen Of Python. Is collection of 20 software principles that influences the design of Python Programming Language. This document best reflects the philosophy of this language.

Zen of Python

	Beautiful is better than ugly.

	Explicit is better than implicit.

	Simple is better than complex.

	Complex is better than complicated.

	Flat is better than nested.

	Sparse is better than dense.

	Readability counts.

	Special cases aren’t special enough to break the rules.

	Although practicality beats purity.

	Errors should never pass silently.

	Unless explicitly silenced.

	In the face of ambiguity, refuse the temptation to guess.

	There should be one—and preferably only one—obvious way to do it.

	Although that way may not be obvious at first unless you’re Dutch.

	Now is better than never.

	Although never is often better than right now.[5]

	If the implementation is hard to explain, it’s a bad idea.

	If the implementation is easy to explain, it may be a good idea.

	Namespaces are one honking great idea—let’s do more of those!

Principles

In short, where this principles actually pay off:

	Readability — Having simple objects defined based on what they do make our life a lot easier coming back to the code we wrote months ago.

	Testability — Since the signatures of the objects are well-defined and very much contained, creating unit and integration tests is super straightforward and fast.

	Robustness — Simple objects allow you to focus on the specificities of each task individually and reduces the amount of input/output variables you need to consider at any given time. Thus making the whole process less error-prone.

	Onboarding — This approach has proven itself very helpful when handing down knowledge as the thought process is like a standard line protocol instead of a wibbly wobbly mix of instructions.

	Caching Layers — For scaling scenarios, you can cache objects using solutions such as Redis just by adding 2/3 lines of code to an object. As such you don’t need interfere with the rest of the codebase.

	Reusability — Given all the examples we’ve seen, I think this speaks for itself.

	Less Issues — Considerably reduces cyclomatic complexity, hence, reducing the amount of defects

Single Responsibility Principle

Here is an example of violating this rule:

class CarWashService:
 def __init__(self, sms_sender):
 self.sms_sender = sms_sender

 def __call__(self, card_id, customer_id):
 car = Car.objects.get(id=card_id)
 customer = Customer.objects.get(customer_id)
 if car.wash_required:
 car.washed = True
 self.sms_sender.send(mobile_phone=customer.phone, text=f"Car %{car.plate} whashed.")

[image: _images/sr.jpg]
After refactor:

class CarWashService:
 def __init__(self, repository, notifier):
 self.repository = repository
 self.notifier = notifier

 def __call__(self, car_id, customer_id):
 car = self.repository.get_car(car_id)
 customer = self.repository.get_customer(customer_id)
 if car.wash_required:
 car.washed = True
 self.notifier.wash_completed(customer.phone, car.plate)

Open-Closed Principle

example:

class Rectangle(object):

 def __init__(self, width, height):
 self.width = width
 self.height = height

class AreaCalculator(object):

 def __init__(self, shapes):

 assert isinstance(shapes, list), "`shapes` should be of type `list`."
 self.shapes = shapes

 @property
 def total_area(self):
 total = 0
 for shape in self.shapes:
 total += shape.width * shape.height

 return total

def main():
 shapes = [Rectangle(2, 3), Rectangle(1, 6)]
 calculator = AreaCalculator(shapes)
 print(calculator.total_area)

[image: _images/oc.jpg]
after refactor You can see that it will be easy to extend the functionality:

from abc import ABCMeta, abstractproperty

class Shape(object):
 __metaclass__ = ABCMeta

 @abstractproperty
 def area(self):
 pass

class Rectangle(Shape):

 def __init__(self, width, height):
 self.width = width
 self.height = height

 @property
 def area(self):
 return self.width * self.height

class AreaCalculator(object):

 def __init__(self, shapes):
 self.shapes = shapes

 @property
 def total_area(self):
 total = 0
 for shape in self.shapes:
 total += shape.area
 return total

def main():
 shapes = [Rectangle(1, 6), Rectangle(2, 3)]
 calculator = AreaCalculator(shapes)

 print(calculator.total_area)

Liskov Substitution Principle

This is a scary term for a very simple concept. It’s formally defined as “If S is a subtype of T, then objects of type T may be replaced with objects of type S (i.e., objects of type S may substitute objects of type T) without altering any of the desirable properties of that program (correctness, task performed, etc.).” That’s an even scarier definition.

The best explanation for this is if you have a parent class and a child class, then the base class and child class can be used interchangeably without getting incorrect results. This might still be confusing, so let’s take a look at the classic Square-Rectangle example. Mathematically, a square is a rectangle, but if you model it using the “is-a” relationship via inheritance, you quickly get into trouble.

Example:

class Rectange:

 def __init__(self):
 self.width = 0
 self.height = 0

 def set_width(self, width):
 self.width = width

 def set_height(self, height):
 self.height = height

 def set_color(self, color):
 self.color = color

 def render(self):
 # ...

class Squere(Rectange):

 def set_width(self, width):
 self.width = width
 self.height = width

 def set_height(self, height):
 self.height = height
 self.width = height

[image: _images/ls.jpg]
After refactor:

class Shape:
 def set_color(self, color):
 self.color = color

 def render(self):
 # ...

class Rectange(Shape):
 def __init__(self, width, heigh):
 self.width = width
 self.height = heigh

 def get_area(self):
 return self.width * self.height

class Square(Shape):
 def __init__(self, length):
 self.length

 def get_area(self):
 return self.length * self.length

Interface Segregation Principle

Dependency Inversion Principle

Depend of abstractions. Do not depend upon concretion.

Example with Global State Problem, Implicit Dependency Problem and Concrete API:

class CarWashService:
 def __init__(self, repository):
 self.repository = repository

 def __call__(self, car_id, customer_ids):
 car_wash_job = CarWashJob(car_id, customer_id)
 self.repository.put(car_wash_job)
 SMSNotifier.send_sms(car_wash_job)

[image: _images/di.jpg]
After refactor:

class CarWashService:
 def __init__(self, notifier, repository):
 self.repository = repository
 self.notifier = notifier

 def __call__(self, car_id, customer_id):
 car_wash_job = CarWashJob(car_id, customer_id)
 self.repository.put(car_wash_job)
 self.notifier.job_completed(car_wash_job)

Style

Little Zen for Code Style

Barry Warsaw, one of the core Python developers, once said that it frustrated him that “The Zen of Python” ([PEP 20][pep20]) is used as a style guide for Python code, since it was originally written as a poem about Python’s internal design. That is, the design of the language and language implementation itself. One can acknowledge that, but a few of the lines from PEP 20 serve as pretty good guidelines for idiomatic Python code, so we’ll just go with it.

Beautiful is better than ugly

This one is subjective, but what it usually amounts to is this: will the person who inherits this code from you be impressed or disappointed? What if that person is you, three years later?

Explicit is better than implicit

Sometimes in the name of refactoring out repetition in our code, we also get a little bit abstract with it. It should be possible to translate the code into plain English and basically understand what’s going on. There shouldn’t be an excessive amount of “magic”.

Flat is better than nested

This one is really easy to understand. The best functions have no nesting, neither by loops nor if statements. Second best is one level of nesting. Two or more levels of nesting, and you should probably start refactoring to smaller functions.

Also, don’t be afraid to refactor a nested if statement into a multi-part boolean conditional.

Readability counts

Don’t be afraid to add line-comments with #. Don’t go overboard on these or over-document, but a little explanation, line-by-line, often helps a whole lot. Don’t be afraid to pick a slightly longer name because it’s more descriptive. No one wins any points for shortening “response” to “rsp”. Use doctest-style examples to illustrate edge cases in docstrings. Keep it simple!

Errors should never pass silently

The biggest offender here is the bare except: pass clause. Never use these. Suppressing all exceptions is simply dangerous. Scope your exception handling to single lines of code, and always scope your except handler to a specific type. Also, get comfortable with the logging module and log.exception(…).

If the implementation is hard to explain, it’s a bad idea

This is a general software engineering principle – but applies very well to Python code. Most Python functions and objects can have an easy-to-explain implementation. If it’s hard to explain, it’s probably a bad idea. Usually you can make a hard-to-explain function easier-to-explain via “divide and conquer” – split it into several functions.

Testing is one honking great idea

OK, we took liberty on this one – in “The Zen of Python”, it’s actually “namespaces” that’s the honking great idea.

But seriously: beautiful code without tests is simply worse than even the ugliest tested code. At least the ugly code can be refactored to be beautiful, but the beautiful code can’t be refactored to be verifiably correct, at least not without writing the tests! So, write tests! Please!

Strict Rules

	Each project must have a flake8 linter.

	Each project must follow PEP8 (with 99 chars limit).

	Docstrings must follow PEP257.

	Do not use wildcard imports.

	Don’t use single letter variable names, unless within a list comprehension.

	Use Python idioms.

	Avoid redundant labeling.

	Prefer reverse notation.

	Sort and divide import statements.

Usefull tools

	https://bitbucket.org/pytest-dev/pytest-pep8

	https://github.com/fschulze/pytest-flakes

	https://github.com/cbrueffer/pep8-git-hook

Code Review

Before you create PR

make sure:

	acceptance criteria from task are met

	you wrote automated tests and they pass

	remove unnecessary debugging code

	you assigned at least 2 persons as reviewers to your PR

	code meets guidelines

If you are a reviewer:

	Do code reviews as soon as possible. Of course your tasks have higher priority, but put yourself in another person’s place - you want to create a PR and get reviewed.

	Check code according to the following guides.

	Click “Approve” when you accept changes.

Basics

	Identify places which were over-engineered.

	Merge is done by the reviewer who approves the PR as the last one, except for a situation when deployment of the code in PR requires some additional configuration in target environment (setting env variables, migrations etc).

	Identify ways to simplify the code while still solving the problem.

	If discussions turn too philosophical or academic, move the discussion face to face or hipchat. The outcome of this discussion should be placed in the comment.

	Offer alternative implementations, but assume the author already considered them.

	
	What do you think about changing it one-line if-statement?

	
	In our guidelines we us ‘ instead of “, is there any particular reason you used “ here?

	Try to understand the author’s perspective.

	Don’t be sarcastic

	You can mark you comment as optional using [opt]

When your code is reviewed:

	Don’t take it personally. It’s a review of the code, not you.

	Try to understand the reviewer’s perspective

	You should respond to almost every comment - this means that every comment from a reviewer should result in a response or a code change.

	Can merge if you have at least two accepts and all comments and discussions are exhausted.

When you review someone’s code

	Remember that you can ask for clarification.

	Avoid using terms that could be seen as referring to personal traits. [dumb, stupid]. Assume everyone is intelligent and well-meaning.

	Be explicit. Remember people don’t always understand your intentions.

Design Architecture

DDD Introduction

Coupling

Coupling is the degree of interdependence between software modules.
All project should be loosely coupled. To do this you follow SOLID principles and useone of above clean architecture examples.

Tight Coupling symptoms

	fat controllers

	fat models

	hard to test

	hard to explain

	hard to read

	spaghetti code

Domain Driven Design Architecture List

	Clean Architecture

	Haxagonal Architecture (Ports and Adapters)

	Onion Architecture

	Screaming Architecture

Layered Structure

In DDD approach project should be layered to at least 3 parts.

	Application (glue code)

	Domain (Business Logic)

	Framework (Framework related Interfaces, all can be used as Open Source)

Characteristics

	Architectures should tell about the system.

	Not about the frameworks.

	New programmers should be able to learn all the use cases of the system.

	And still not know how the system is delivered.

	They may come to you and say: “We see some things that look sorta like models, but where are the views and controllers”, and you should say: “Oh, those are details that needn’t concern you at the moment, we’ll show them to you later.”

DDD Recipes

Common Project Structure

Framework layer

	utils.py

	commons.py

	generics.py

	base.py

	extensions.py

	adapters.py

Domain Layer

	services.py

	schemas.py

	models.py

	factories.py

	repositories.py

	exceptions.py

Application Layer

	views.py

	routes.py

	exceptions.py

	app.py

	wsgi.py

	tasks.py

	permissions.py

	authentications.py

Flask/SQLAlchemy Project Structure

TODO

Django Project Structure

TODO

Open Source

Our open source projects

We are the main developers of the following open source projects:

	SQLXerion (not packaged yet)

	Flask-AdminLogin (not packaged yet)

	Flask-FileAlchemy (not packaged yet)

	Flask-ImageAlchemy [https://github.com/rstit/flask-image-alchemy]

	Flask-PyFCM [https://github.com/rstit/flask-pyfcm]

	Flask-Airbrake [https://github.com/rstit/flask-airbrake]

Guides

	Project should have good coverage of test

	Project should have configured CI on travis or similiar

	All practices from this documents should be implemented

Process [WIP]

Idea

Agile Manifesto

	Individuals and interactions over processes and tools

	Working software over comprehensive documentation

	Customer collaboration over contract negotiation

	Responding to change over following a plan

http://agilemanifesto.org/

Prioritizing and scheduling tasks

Scrum & Kanban

TODO.

Bug tracking

IEEE Standard Classification for Software Anomalies:

	Blocking: Testing is inhibited or suspended pending correction or identification of suitable workaround.

	Critical: Essential operations are unavoidably disrupted, safety is jeopardized, and security is compromised.

	Major: Essential operations are affected but can proceed.

	Minor: Nonessential operations are disrupted.

	Inconsequential: No significant impact on operations.

Tools

TODO
For open source project we should use github’s issue page
For private project we use Jirra

Versionning and releasing

(Semantic) Versionning

See:

	<http://semver.org/>

	<https://www.python.org/dev/peps/pep-0440/>

Releasing

TODO

Python Libraries

Favorite libraries:

	flask - Flask is a microframework for Python based on Werkzeug, Jinja 2 and good intentions.

	aiohttp - Asynchronous HTTP Client/Server for Python and asyncio

	apistar - A smart Web API framework, designed for Python 3.

	sqlalchemy - The Python SQL Toolkit and Object Relational Mapper

	marshmallow - is an ORM/ODM/framework-agnostic library for converting complex datatypes, such as objects, to and from native Python datatypes.

	injector - Python dependency injection framework, inspired by Guice.

Resources

The best sources of knowledge.

Books

	Domain-Driven Design: Tackling Complexity in the Heart of Software

	Clean Code: A Handbook of Agile Software Craftsmanship

	Extreme Programming Explained: Embrace Change

	Refactoring to Patterns

	The Clean Coder: A Code of Conduct for Professional Programmers

	Code Complete (Developer Best Practices

Blogs

	http://blog.cleancoder.com/ by Robert C. Martin (Uncle Bob)

	http://lucumr.pocoo.org/ by Armin Ronacher (Flask)

	https://emacsway.github.io by Ivan Zakrevskyi (XP and DDD expert)

	https://www.joelonsoftware.com by Joel Spolsky (Stack Overflow CEO)

	https://rhettinger.wordpress.com by Raymond Hettinger (Python core developer)

Articles
- http://www.ballofcode.com/python/domain-driven-design/2013/12/22/exploring-domains-with-python
- https://github.com/anthony-tresontani/methodic-python/blob/master/DomainDrivenDesign.rst
- https://stevewedig.com/2014/07/31/value-objects-in-java-and-python/
- https://blog.fedecarg.com/2009/03/11/domain-driven-design-and-mvc-architectures/

stackoverflow questions

YouTube Videos

	Clean application architecture https://www.youtube.com/watch?v=NXzPRVLEmUE

	Deliver domain driven designs dynamically https://www.youtube.com/watch?v=p7PHOFRtI04

	The Clean Architecture in Python https://www.youtube.com/watch?v=DJtef410XaM

	Building highly decoupled systems in Python https://www.youtube.com/watch?v=3MEsh44XZDo

	Clean Architecture in Python (web) apps https://www.youtube.com/watch?v=4X1hNuW7WGo

	Beyond PEP 8 – Best practices for beautiful intelligible code https://www.youtube.com/watch?v=wf-BqAjZb8M

YouTube Channels

	https://www.youtube.com/user/pyconpl

	https://www.youtube.com/user/PyWaw

Podcasts

	https://talkpython.fm/ - A podcast on Python and related technologies

Sample Projects

	https://github.com/jordifierro/abidria-api

	https://github.com/MichaelDiBernardo/ddd-flask-example

	https://github.com/basco-johnkevin/ddd-python-django

Documentation

Glossary

The domain and the technical experts should create document of all the terminology that your team uses in code and issue tracker.
after reading this, there should be no doubt what is happening in the code or what should be done in the task.

Readme

A README file at the root directory should give general information to both users and maintainers
of a project. It should be raw text or written in some very easy to read markup, such as
reStructuredText or Markdown. It should contain a few lines explaining the purpose of the project
or library (without assuming the user knows anything about the project), the URL of the main source
for the software. This file should also have information how to configure and run projects for
multiple environments (local, prod, testing). This file is the main entry point for readers of
the code.

example file:

Project Title
One Paragraph of project description goes here

Getting Started
These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system.

Prerequisites
What things you need to install the software and how to install them
```
Give examples
```

Installing
A step by step series of examples that tell you have to get a development env running
```
Give the example
```

Running the tests
Explain how to run the automated tests for this system

Deployment
Add additional notes about how to deploy this on a live system

API specification

All backend project should have documented endpoints in apiary.apib file. With this blueprint file
you can already get a mock, documentation and test for your API. This file describe File should be always and up-to-date. Apiary ensures

example file:

FORMAT: 1A

The Simplest API
This is one of the simplest APIs written in the **API Blueprint**.

List All Questions [GET]
+ Response 200 (application/json)

 + Attributes (array[Question])

Data Structures

Question
+ question: Favourite programming language? (required)
+ published_at: `2014-11-11T08:40:51.620Z` (required)
+ url: /questions/1 (required)
+ choices (array[Choice], required)

Choice
+ choice: Javascript (required)
+ url: /questions/1/choices/1 (required)
+ votes: 2048 (number, required)

Docstring

All domain classes should have docstring for class definition. We should create them also
for complex classes and functions that will be used in other places.

class CarWashService:
 """
 This class describe how to wash a car.
 Service performs advanced and complex actions to wash the customer's car.
 Require repository that could be injected using Dependency Injection.
 After all, calls the function responsible for notifications.
 """
 def __init__(self, repository, notifier):
 self.repository = repository
 self.notifier = notifier

 def __call__(self, car_id, customer_id):
 car = self.repository.get_car(car_id)
 customer = self.repository.get_customer(customer_id)
 if car.wash_required:
 car.washed = True
 car.washed_at = utcnow()
 self.notifier.wash_completed(customer.phone, car.plate)
 return car

Type Hint

If there is such a possibility, we should use it wherever possible. This will allow showing
explicitly what we expect and what will be returned.

class CarWashService:
 """
 This class describe how to wash a car.
 Service performs advanced and complex actions to wash the customer's car.
 Require repository that could be injected using Dependency Injection.
 """
 def __init__(self, repository: MongoRepository, notifier: SMSNotifier) -> None:
 self.repository = repository
 self.notifier = notifier

 def __call__(self, car_id: int, customer_id: int) -> Car:
 """
 :param car_id: Unique Identifier of a Car
 :param customer_id: Unique Identigier of a Customer
 :return:
 """
 car = self.repository.get_car(car_id)
 customer = self.repository.get_customer(customer_id)
 if car.wash_required:
 car.washed = True
 car.washed_at = utcnow()
 self.notifier.wash_completed(customer.phone, car.plate)
 return car

Refactoring [WIP]

The Boy Scout Rule

Refactoring Patterns

PyCharm tips and tricks

Modeling [WIP]

TODO

Testing [WIP]

Unit tests

Integration tests

Mocking

Patching

TDD

pytest

utils

DevOps

Continous Integration

Infrastructure

Tools

Scaling

Index

Docker

Why you should use docker

Best practices

Example

Python

TODO

 _static/file.png

_static/plus.png

_static/logo.png
SOFTWARE HOUSE

_static/minus.png

_static/solid/di.jpg
Dependency Inversion Principle

Would you solder a lamp directly
to the electrical wiring in a wall?

_static/solid/is.jpg
Interface Segregation Principle

You want me to plug this in where?

_static/up-pressed.png

_static/up.png

_images/di.jpg
Dependency Inversion Principle

Would you solder a lamp directly
to the electrical wiring in a wall?

_static/solid/oc.jpg
/"°

Open-Closed Principle

Open-chest surgery isn't needed when putting on a coat.

_images/ls.jpg
Liskov Substitution Principle

If it looks like a duck and quacks like a duck but needs batteries,
you probably have the wrong abstraction.

_static/solid/sr.jpg
Single Responsibility Principle

Just because you can doesn’t mean you should.

nav.xhtml

 Table of Contents

 		
 Welcome to our guides page!

 		
 Introduction

 		
 Zen of Python

 		
 Principles

 		
 Single Responsibility Principle

 		
 Open-Closed Principle

 		
 Liskov Substitution Principle

 		
 Interface Segregation Principle

 		
 Dependency Inversion Principle

 		
 Style

 		
 Little Zen for Code Style

 		
 Beautiful is better than ugly

 		
 Explicit is better than implicit

 		
 Flat is better than nested

 		
 Readability counts

 		
 Errors should never pass silently

 		
 If the implementation is hard to explain, it’s a bad idea

 		
 Testing is one honking great idea

 		
 Strict Rules

 		
 Usefull tools

 		
 Code Review

 		
 Before you create PR

 		
 Basics

 		
 When your code is reviewed:

 		
 When you review someone’s code

 		
 Design Architecture

 		
 DDD Introduction

 		
 Coupling

 		
 Tight Coupling symptoms

 		
 Domain Driven Design Architecture List

 		
 Layered Structure

 		
 Characteristics

 		
 DDD Recipes

 		
 Common Project Structure

 		
 Framework layer

 		
 Domain Layer

 		
 Application Layer

 		
 Flask/SQLAlchemy Project Structure

 		
 Django Project Structure

 		
 Open Source

 		
 Our open source projects

 		
 Guides

 		
 Process [WIP]

 		
 Idea

 		
 Agile Manifesto

 		
 Prioritizing and scheduling tasks

 		
 Scrum & Kanban

 		
 Bug tracking

 		
 Tools

 		
 Versionning and releasing

 		
 (Semantic) Versionning

 		
 Releasing

 		
 Python Libraries

 		
 Resources

 		
 Books

 		
 Blogs

 		
 stackoverflow questions

 		
 YouTube Videos

 		
 YouTube Channels

 		
 Podcasts

 		
 Sample Projects

 		
 Documentation

 		
 Glossary

 		
 Readme

 		
 API specification

 		
 Docstring

 		
 Type Hint

 		
 Refactoring [WIP]

 		
 The Boy Scout Rule

 		
 Refactoring Patterns

 		
 PyCharm tips and tricks

 		
 Modeling [WIP]

 		
 Testing [WIP]

 		
 Unit tests

 		
 Integration tests

 		
 Mocking

 		
 Patching

 		
 TDD

 		
 pytest

 		
 utils

 		
 DevOps

 		
 Continous Integration

 		
 Infrastructure

 		
 Tools

 		
 Scaling

_static/solid/ls.jpg
Liskov Substitution Principle

If it looks like a duck and quacks like a duck but needs batteries,
you probably have the wrong abstraction.

_static/ajax-loader.gif

_images/oc.jpg
/"°

Open-Closed Principle

Open-chest surgery isn't needed when putting on a coat.

_images/sr.jpg
Single Responsibility Principle

Just because you can doesn’t mean you should.

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

